Characterizing Algebraic Invariants by Differential Radical Invariants (CMU-CS-13-129)
نویسندگان
چکیده
We prove that any invariant algebraic set of a given polynomial vector field can be algebraically represented by one polynomial and a finite set of its successive Lie derivatives. This so-called differential radical characterization relies on a sound abstraction of the reachable set of solutions by the smallest variety that contains it. The characterization leads to a differential radical invariant proof rule that is sound and complete, which implies that invariance of algebraic equations over real-closed fields is decidable. Furthermore, the problem of generating invariant varieties is shown to be as hard as minimizing the rank of a symbolic matrix, and is therefore NP-hard. We investigate symbolic linear algebra tools based on Gaussian elimination to efficiently automate the generation. The approach can, e.g., generate nontrivial algebraic invariant equations capturing the airplane behavior during take-off or landing in longitudinal motion.
منابع مشابه
Characterizing Algebraic Invariants by Differential Radical Invariants
We prove that any invariant algebraic set of a given polynomial vector field can be algebraically represented by one polynomial and a finite set of its successive Lie derivatives. This so-called differential radical characterization relies on a sound abstraction of the reachable set of solutions by the smallest variety that contains it. The characterization leads to a differential radical invar...
متن کاملDifferential Invariants and Symbolic Integration for Distributed Hybrid Systems (CMU-CS-12-107)
We present a formal proof of collision avoidance for a simple distributed hybrid system consisting of an arbitrary finite number of cars on a one dimensional road. Our cars take actions independently from one another and without synchronization, thus behaving in a truly distributed manner. We allow cars to enter and exit the road. For the continuous dynamics, we show how differential invariants...
متن کاملno-homomorphism conditions for hypergraphs
In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.
متن کاملRational, Replacement, and Local Invariants of a Group Action
The paper presents a new algorithmic construction of a finite generating set of rational invariants for the rational action of an algebraic group on the affine space. The construction provides an algebraic counterpart of the moving frame method in differential geometry. The generating set of rational invariants appears as the coefficients of a Gröbner basis, reduction with respect to which allo...
متن کاملAlgebraic and Differential Invariants
This article highlights a coherent series of algorithmic tools to compute and work with algebraic and differential invariants.
متن کامل